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Received 11 January 1980 

Abstract. The backward Kolmogorov equation is established and solved for a Markovian 
system of coagulating droplets. The resulting probability generating function of the total 
number of droplets coincides with the expression recently obtained by Williams from the 
forward equation. Thus the equivalence of the two approaches is verified for a system 
whose evolution implies a probability balance giving rise to terms nonlinear in the state 
variable. 

It is shown that the backward equation lends itself to being solved directly in terms of 
moments of any order, whereas the forward equation shows in this respect the problem of 
closure. 

1. Introduction 

In a recent paper published in this journal (Williams 1979), the statistical distribution of 
coagulating droplets was studied, assuming that they form a discrete Markov system in 
continuous time. For the first time an exact solution was obtained for the time- 
dependent probability distribution of the total number of droplets irrespective of their 
volume. The fundamental equation solved in that work was constructed from a 
probability balance according to the scheme suggested by Bartlett (1962), and is 
actually the forward Kolmogorov equation (FKE) for the stochastic process considered. 

It is well known that a probability balance can also be set up in a manner such as to 
lead to the backward Kolmogorov equation (BKE) (Feller 1968). 

It is the purpose of the present paper to establish and solve the BKE for the 
probability distribution of droplets in suspension under the assumptions introduced by 
Williams to make the problem tractable. To this end, the droplets will again be 
considered to be uniformly mixed in space, to undergo only binary collisions, to stick 
together and conserve the effective size after a collision. 

Although it is commonly claimed that the backward approach is entirely equivalent 
to the forward approach, the former seems to be less frequently used. Thus one of the 
motivations of this work is to confirm, in a case where an exact solution exists, that the 
two approaches indeed yield the same result. 

The second motivation is to show, especially in a case such as the present one where 
the probability balance introduces terms nonlinear in the state variables due to the 
interaction of the droplets among themselves, that the solution of the backward 
equation is attained in a perhaps more direct fashion. For instance, purely matrix 
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methods substitute for the resort to special functions that is required for the solution of 
the forward equation. 

Finally, the backward equation will be shown not to suffer from the problem of 
closure, i.e. the inability to calculate the statistical averages of the distribution from a 
closed set of equations, which affects the forward equation. 

2. General theory of the backward approach 

We denote by P(n,  tlN, 7 )  the conditional probability that the total number of droplets 
is n at time t, given that it was N at time T < t. If the droplets are assumed to form a 
Markovian system, this probability satisfies the Chapman-Kolmogorov equation 
(Feller 1968), namely 

P(n, tlN, T - A T j  = P(N',  TIN, T - b ~ ) P ( n ,  tlN', 7 )  (1) 
" 

with the summation extended to all possible values of the total number of droplets N' at 
time T between T - AT and t. Considering that in AT two droplets either collide or do 
not, the infinitesimal transition probability is 

P(Nr ,  TIN, T - A T )  = PN(N - 1) ATSTS",N-I i- [I - PN(N - 1) A T ] S N , N  ( 2 )  
where S is the Kronecker symbol, P is the constant binary collision rate and thus 
PN(N - 1) represents the collision probability per unit time. Inserting equation ( 2 )  in 
equation ( l ) ,  simplifying and letting AT + 0 yields the backward differential equation for 
the conditional probability, 

(3) 
a 

a7 

~ ( n ,  t l ~ ,  t )  = anN. 

-P(n, flN, T ) = P N ( N - l ) [ P ( n ,  tlN, T ) - P ( n ,  tlN-1, T ) ] ,  

with the boundary condition at the final time t 

(4) 

Introducing the probability generating function for the total number of droplets n at 
time t, 

where x is a dummy variable, multiplying equation (3) by x n  and summing over n, one 
obtains the backward differential equation for the generating function, 

(6) 
a 

-F(x ,  tlN, 7 )  = P N ( N  - I ) [ F ( x ,  tlN, T)-F(x ,  tliv - 1, T)]. 
a7 

The boundary condition imposed on equation (6)  stems from equations (4) and ( 5 )  and 
is 

~ ( x ,  tiN, t )  = x". 

F(x, t l l ,  7 )  = x, 

(7) 

(8) 

The solution of equations (6)  and (7) for N = 1 is 

which can also be obtained from equation ( 5 )  since on physical grounds P(n ,  t ) l ,  7) = 
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Snl. Letting N = 2 , 3 ,  . , , and recalling equation (g), equation (6)  can be recast in the 
matrix form 

where IF) is the column vector whose hth component is 

h = 1 , 2 , .  . . , N - 1 ,  m x ,  tlh + 1 , 7 1 2  (10) 

Mhk = p h ( h  + 1 ) ( a h k  - S h - i , k ) ,  ( 1 1 )  

lu)=col(-2px 0 0 0 . .  . O ) .  (12) 

lim IF) = Ig), ( 1 3 )  

M is the bidiagonal matrix whose elements are 

h, k =  1, 2 , .  . . , N - 1 ,  

and [U) is the ( N  - 1)-row vector defined by 

According to equation (7), the boundary condition for equation (9) is 

7-1 

where lg) is the column vector whose hth component is 

9 h = 1 , 2 , .  I . , N - 1 .  gh = X ( h + l )  

The general solution of equation (9) is 

which, setting the time origin at the initial time (T = 0), becomes 

To proceed further, one needs to evaluate the exponential function of the matrix M in 
equation ( 1 5 ) .  This will be accomplished through the spectral decomposition of the 
matrix M. 

3. Spectral decomposition of matrix M 

Matrix M has N - 1  distinct eigenvalues that are its main diagonal elements Mhh. 
Hence it can be decomposed as 

nf = SDQ, (16) 
where D is the diagonal matrix with elements 

Dhk = Mhhshk? h, k = l , 2 , ,  . . , N - 1 ,  (17) 

Q = S-l. (18) 

A@4§.J = MtISJ, i = 1 , 2  , . . . ,  N--1, , ( 1 %  

S is the matrix whose columns are the N - 1 eigenvectors of the matrix M and 

The calculation of the eigenvectors is carried out starting from their definition, namely 
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whence one obtains, using equation (1 l ) ,  the following recurrence formula for the 
elements of the matrix S :  

[ j (  j + 1) - i ( i  + l)]Sji = j (  j + l)Sj-l,i, i , j = 1 , 2  , . . . ,  N - 1 .  

From this equation it is easy to show that Sii vanishes for j S i - 1 and is proportional to 
Sjj for j > i + l ;  moreover, one can choose Sii = 1 since the eigenvalues contain an 
arbitrary multiplicative constant according to equation (19). Thus, after some 
simplifications, the elements of the matrix S can be written 

j !  ( j  + l ) !  (2i+ l)! 
= i !  ( i +  l ) ! ( j - i ) !  ( i + j +  l)! 

for j 3 i, 

for j s i - 1 ( i  > 1). 
(20) sii 17 j,i = 1.2 ,..., N--  1 

The inversion of the matrix S is more conveniently performed using equation (16), 
which can be written 

QM = DQ, 

whence one obtains, using equations (1 1) and (17), the following recurrence formula for 
the elements Qj, of the matrix S-l: 

[ r ( r + l ) - j ( j +  l ) ] Q j , = ( r + l ) ( r + 2 ) Q ~ , r ~ l ,  j , r = l , 2 , .  . . , N - 1 .  

From this equation it is easy to show that Qj, vanishes for j < r - 1 and is proportional to 
Qji for j r + 1. On the other hand, this latter, with the help of the relation 

N-1 

C SjiQir = S j r  
i = l  

which comes from equation (18), and using equation (20), turns out to be one. Thus 
after some simplifications the elements of the matrix S-' can be written 

(--I)'-?! ( j  + I)! ( j  + r)! 
r! (r + l)! ( j  - r)! (2j)! 

for j 3 r, 

f o r j < r - 1  ( r > l ) .  

- 

(22) Qjr 
j , r=1,2 ,.... N-1  

Equation (21) allows us also to find a relation, useful in the.seque1, satisfied by the 
elements Sji and Qir in the range of indices where neither of them vanish. In fact, using 
equations (20) and (22), equation (21) reduces to 

i 1 SjiQir = 6jr for j 2 r, 
i = r  

namely, after some calculations, to the identity 

= sir for j a r. 
(-1)i-r ( 2 i + l ) ( i + r ) !  

i = r  ( j  - i)! ( i  + j + l)! ( i  - r ) !  

Analogously, another useful identity is obtained from the relation 
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which also comes from equation (18). Using equations (20) and (22), after some 
calculations this leads to 

for j 3 r, Sir =- f: (-1)j-i ( j + i ) !  
i = r  ( j - i ) !  (i -r)! (i +t+ l ) !  2r + 1 

4. Solution of the backward equation 

The exponential function of the matrix M can be written in terms of its eigenvalues and 
eigenvectors as 

e-Mr = SD’Q, (25) 

D L k  = eXP(-Mhhf)ahk, h, k = 1 , 2 , .  . . , N - 1 .  (26) 

where D’ is the diagonal matrix with elements 

Inserting equations (25), (26) and the analogous ones for time T’ in equation (15) and 
carrying out the integration, the solution of the backward matrix equation (9) becomes 

= 0 .= SD ’ Q I g ) - SD”Q I U ), (27) 

where D” is the diagonal matrix with elements 

Now we can explicitly write the expression of the probability generating function of the 
total number of droplets at time t, given that there were N at time zero. In fact, the last 
row of equation (27) is immediately evaluated to be 

N-1 i 

F(X, tlN, o )=  i = l  sN-i,i(D;i r = l  1 Qir~‘+’+2&D~Q,1), 

where equations (lo), (26), (14), (28) and (12) were used and contraction of the range of 
the second sum was possible on account of the properties of the Qir)s. After substituting 
for the several parameters from equations (20), (22), (26), (28) and ( l l ) ,  the RHS of the 
equation above is easily reduced to its final form through some computational steps 
which feature the inversion of the first two sums and a simplification based on identity 
(23). At last one obtains 

N-1 X r + l  N-1 (2i + l ) ( i  + r ) !  e-’i(i+l)t 
r = O  r! (r + l ) !  i = r  

F(x , t /N ,O)=N!(N- l ) !  ( - 1 p  (29) ( N +  i)! ( N - i  - l ) !  ( i  -r)! * 

This equation expresses the generating function as a polynomial in the dummy variable. 
The coefficient of the power xr+’ is the conditional probability P ( r  + 1, tlN, 0), r = 
0, 1,2,  . . . , N - 1, and coincides with that obtained by Williams (1979) solving the 
forward equation. The generating function of equation (29) satisfies the boundary 
condition (7), namely F(x,  OIN, 0) = x”, and the well known property F(x = 1, t(N, 0) = 
1. We point out that, for the verification of these relations, the use of the identities (23) 
and (24) obtained in 0 3 as a by-product of the main procedure is fundamental. 
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5. Backward equation and closure problem 

Instead of solving the backward matrix equation (9), thus obtaining the complete 
probability distribution, one might solve for the moments of the distribution directly. 
Differential equations for the vectors of the factorial moments and corresponding 
boundary conditions are established after repeatedly differentiating equations (9), (13) 
and (14) with respect to x and setting x = 3 .  

In so doing, one obtains for the vector of the factorial moment of any order a 
differential equation formally equal to equation (9); its solution at the initial time 7 = 0 
will be given by equation (27) after substituting for lg) and [U) their differentials with 
respect to x of appropriate order evaluated at x = 1. 

This conclusion is to be compared with what happens when the procedure of 
obtaining equations for the moments is carried out on the forward equation (Williams 
1979). There the problem of closure arises, namely the equation for any moment 
contains moments of higher order and it is impossible to obtain a closed set of equations. 
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